虽然最先进的视觉变压器模型实现了图像分类的有希望的结果,但它们是非常昂贵的并且需要许多GFLOPS。尽管可以通过减少网络中的令牌数量来降低视觉变压器的GFLOPS,但是没有对所有输入图像的最佳设置。因此,在这项工作中,我们引入了可分辨率的无参数自适应令牌采样(ATS)模块,可以插入任何现有的视觉变压器架构。通过评分和自适应采样重要令牌,在视觉变压器上实现视觉变压器。结果,令牌的数量不再静态,但是每个输入图像都变化。通过将ATS集成为当前变压器块内的附加层,我们可以将它们转换为具有自适应令牌的更高效的视觉变压器。由于ATS是一种无参数模块,因此它可以作为即插即用模块添加到从货架上的预制视觉变压器中,从而在没有任何额外训练的情况下减少他们的GFLOP。但是,由于其可分辨动的设计,人们还可以培训配有ATS的视觉变压器。通过将其添加到多个最先进的视觉变压器,我们在想象成数据集上进行评估。我们的评估表明,通过将计算成本(GFLOPS)降低37%,在保留准确性时,该模块通过降低了37%,提高了最先进的模块。
translated by 谷歌翻译
This paper proposes a self-supervised approach to learn universal facial representations from videos, that can transfer across a variety of facial analysis tasks such as Facial Attribute Recognition (FAR), Facial Expression Recognition (FER), DeepFake Detection (DFD), and Lip Synchronization (LS). Our proposed framework, named MARLIN, is a facial video masked autoencoder, that learns highly robust and generic facial embeddings from abundantly available non-annotated web crawled facial videos. As a challenging auxiliary task, MARLIN reconstructs the spatio-temporal details of the face from the densely masked facial regions which mainly include eyes, nose, mouth, lips, and skin to capture local and global aspects that in turn help in encoding generic and transferable features. Through a variety of experiments on diverse downstream tasks, we demonstrate MARLIN to be an excellent facial video encoder as well as feature extractor, that performs consistently well across a variety of downstream tasks including FAR (1.13% gain over supervised benchmark), FER (2.64% gain over unsupervised benchmark), DFD (1.86% gain over unsupervised benchmark), LS (29.36% gain for Frechet Inception Distance), and even in low data regime. Our codes and pre-trained models will be made public.
translated by 谷歌翻译
Mixture of factor analyzer (MFA) model is an efficient model for the analysis of high dimensional data through which the factor-analyzer technique based on the covariance matrices reducing the number of free parameters. The model also provides an important methodology to determine latent groups in data. There are several pieces of research to extend the model based on the asymmetrical and/or with outlier datasets with some known computational limitations that have been examined in frequentist cases. In this paper, an MFA model with a rich and flexible class of skew normal (unrestricted) generalized hyperbolic (called SUNGH) distributions along with a Bayesian structure with several computational benefits have been introduced. The SUNGH family provides considerable flexibility to model skewness in different directions as well as allowing for heavy tailed data. There are several desirable properties in the structure of the SUNGH family, including, an analytically flexible density which leads to easing up the computation applied for the estimation of parameters. Considering factor analysis models, the SUNGH family also allows for skewness and heavy tails for both the error component and factor scores. In the present study, the advantages of using this family of distributions have been discussed and the suitable efficiency of the introduced MFA model using real data examples and simulation has been demonstrated.
translated by 谷歌翻译
乳腺癌是全球女性中最常见的癌症。乳腺癌的早期诊断可以显着提高治疗效率。由于其可靠性,准确性和负担能力,计算机辅助诊断(CAD)系统被广泛采用。乳腺癌诊断有不同的成像技术。本文使用的最准确的是组织病理学。深度传输学习被用作提议的CAD系统功能提取器的主要思想。尽管在这项研究中已经测试了16个不同的预训练网络,但我们的主要重点是分类阶段。在所有测试的CNN中,具有剩余网络既有剩余网络既有剩余和启动网络的启发能力,均显示出最佳的特征提取能力。在分类阶段,Catboost,XGBOOST和LIGHTGBM的合奏提供了最佳的平均精度。 Breakhis数据集用于评估所提出的方法。 Breakhis在四个放大因素中包含7909个组织病理学图像(2,480个良性和5,429个恶性)。提出的方法的准确性(IRV2-CXL)使用70%的Breakhis数据集作为40倍,100X,200X和400X放大倍率的训练数据分别为96.82%,95.84%,97.01%和96.15%。大多数关于自动乳腺癌检测的研究都集中在特征提取上,这使我们参加了分类阶段。 IRV2-CXL由于使用软投票集合方法而显示出更好或可比较的结果,该合奏方法可以将Catboost,XGBoost和LightGBM的优势结合在一起。
translated by 谷歌翻译
在医学中,图像注册对于图像引导的干预措施和其他临床应用至关重要。但是,很难解决,通过机器学习的出现,最近在该领域的医疗图像注册方面已经取得了很大的进步。深度神经网络的实施为某些医学应用提供了机会,例如在更少的时间内进行图像注册,以高精度,在操作过程中对抗肿瘤中发挥关键作用。当前的研究对基于无监督的深神经网络的医学图像注册研究的最新文献进行了全面的范围审查,其中包括到本领域在此日期中发表的所有相关研究。在这里,我们试图总结医学领域中无监督的基于深度学习的注册方法的最新发展和应用。在当前的全面范围审查中,精心讨论和传达了基本和主要概念,技术,从不同观点,新颖性和未来方向的统计分析。此外,这篇评论希望帮助那些被这一领域铆接的活跃读者深入了解这一激动人心的领域。
translated by 谷歌翻译
土壤侵蚀是对世界各地环境和长期土地管理的重大威胁。人类活动加速的土壤侵蚀会造成陆地和水生生态系统的极端变化,这在现场阶段(30-m)的当前和可能的未来没有得到充分的调查/预测。在这里,我们使用三种替代方案(2.6、4.5和8.5)估计/预测通过水侵蚀(薄板和RILL侵蚀)的土壤侵蚀速率,共享社会经济途径和代表性浓度途径(SSP-RCP)情景。田间尺度的土壤侵蚀模型(FSSLM)估计依赖于由卫星和基于图像的土地使用和土地覆盖的估计(LULC)集成的高分辨率(30-m)G2侵蚀模型,对长期降水量的规范观察,以及耦合模型比较项目阶段6(CMIP6)的方案。基线模型(2020年)估计土壤侵蚀速率为2.32 mg HA 1年1年,具有当前的农业保护实践(CPS)。当前CPS的未来情况表明,在气候和LULC变化的SSP-RCP方案的不同组合下,增加了8%至21%。 2050年的土壤侵蚀预测表明,所有气候和LULC场景都表明极端事件的增加或极端空间位置的变化很大程度上从南部到美国东部和东北地区。
translated by 谷歌翻译
Research on automated essay scoring has become increasing important because it serves as a method for evaluating students' written-responses at scale. Scalable methods for scoring written responses are needed as students migrate to online learning environments resulting in the need to evaluate large numbers of written-response assessments. The purpose of this study is to describe and evaluate three active learning methods than can be used to minimize the number of essays that must be scored by human raters while still providing the data needed to train a modern automated essay scoring system. The three active learning methods are the uncertainty-based, the topological-based, and the hybrid method. These three methods were used to select essays included as part of the Automated Student Assessment Prize competition that were then classified using a scoring model that was training with the bidirectional encoder representations from transformer language model. All three active learning methods produced strong results, with the topological-based method producing the most efficient classification. Growth rate accuracy was also evaluated. The active learning methods produced different levels of efficiency under different sample size allocations but, overall, all three methods were highly efficient and produced classifications that were similar to one another.
translated by 谷歌翻译
Compared to regular cameras, Dynamic Vision Sensors or Event Cameras can output compact visual data based on a change in the intensity in each pixel location asynchronously. In this paper, we study the application of current image-based SLAM techniques to these novel sensors. To this end, the information in adaptively selected event windows is processed to form motion-compensated images. These images are then used to reconstruct the scene and estimate the 6-DOF pose of the camera. We also propose an inertial version of the event-only pipeline to assess its capabilities. We compare the results of different configurations of the proposed algorithm against the ground truth for sequences of two publicly available event datasets. We also compare the results of the proposed event-inertial pipeline with the state-of-the-art and show it can produce comparable or more accurate results provided the map estimate is reliable.
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
Transformers have recently gained attention in the computer vision domain due to their ability to model long-range dependencies. However, the self-attention mechanism, which is the core part of the Transformer model, usually suffers from quadratic computational complexity with respect to the number of tokens. Many architectures attempt to reduce model complexity by limiting the self-attention mechanism to local regions or by redesigning the tokenization process. In this paper, we propose DAE-Former, a novel method that seeks to provide an alternative perspective by efficiently designing the self-attention mechanism. More specifically, we reformulate the self-attention mechanism to capture both spatial and channel relations across the whole feature dimension while staying computationally efficient. Furthermore, we redesign the skip connection path by including the cross-attention module to ensure the feature reusability and enhance the localization power. Our method outperforms state-of-the-art methods on multi-organ cardiac and skin lesion segmentation datasets without requiring pre-training weights. The code is publicly available at https://github.com/mindflow-institue/DAEFormer.
translated by 谷歌翻译